Molecular Mobilities of Individual Constituent Carbons of Solid Polyesters above $T_{\rm g}$ As Studied by Carbon-13 Nuclear Magnetic Resonance Spectroscopy

Fumitaka Horii,* Asako Hirai, Kouichi Murayama, and Ryozo Kitamaru

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Toshimitsu Suzuki

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan. Received March 1, 1982

ABSTRACT: High-resolution 13 C spectra and spin-lattice relaxation times T_1 have been measured for solid terephthalic acid polyesters $[-COC_eH_4COO(CH_2)_mO-]_n$ (m=2,3,4,6, and 10) and succinic acid polyesters $[-COC_2H_4COO(CH_2)_mO-]_n$ (m=2 and 4) over a wide range of temperatures above T_g by the 14 H scalar-decoupling technique. The high-resolution lines of the individual carbons of the terephthalic acid polyesters appear at different temperatures, T_a , indicating that the carbons differ greatly in molecular mobility. According to the results, they are divided into three groups: terephthaloyl residues, terminal CH₂ groups directly attached to the ester bond, and other central CH₂ groups in the glycol residues. The molecular mobilities of these groups are strongly dependent on the number m of CH₂ groups: for m=2 and 3, terephthaloyl residues are more mobile than CH₂ groups, regardless of the existence of two kinds of CH₂ groups for m=3. For $m \ge 4$ central CH₂ groups become most mobile, whereas terminal CH₂ groups are still highly restricted in motion. Similar results have been obtained from the measurements of the temperature T_{\min} at which T_1 has a minimum value and the segmental motion is described by a shorter correlation time (about 5×10^{-9} s) than at T_a . On the other hand, all CH₂ groups of succinic acid polyesters are almost equally mobile. On the basis of these results the molecular motions of the terephthalic acid polyesters are discussed.

Introduction

Molecular motions of solid polymers have been extensively investigated by measuring dynamic mechanical relaxation, dielectric relaxation, nuclear magnetic relaxation, and other relaxation phenomena. Several relaxation processes such as α , β , and γ processes have been found in amorphous and semicrystalline polymers and assigned to different modes of motion for backbone chains or side groups.1 However, it is not yet clear how the individual carbons in the molecule contribute to these relaxation processes. Variable-temperature ¹³C high-resolution NMR in solids will be useful for such analyses of relaxation processes because relaxation parameters can be measured for each carbon by combining the techniques of cross polarization, high-power proton decoupling, and magic-angle sample spinning.² Some attempts³⁻⁵ have been already reported using a home-built temperature-controlling system.

On the other hand, well above the glass transition temperature $T_{\rm g}$, ¹³C high-resolution spectra are obtainable for solid polymers even by conventional NMR spectrometers used for liquids owing to the reduction of ¹³C–¹H dipolar interactions by rapid molecular motions. ⁶⁻¹² In this paper, we report a study of molecular motions of each constituent carbon in different polyesters above $T_{\rm g}$ by conventional ¹³C NMR spectroscopy. The polyesters used are terephthalic acid polyesters [$-{\rm COC}_6{\rm H}_4{\rm COO}({\rm CH}_2)_m{\rm O}-]_n$, m=2,3,4,6, and 10 (subsequently referred to as ${\rm C}_m{\rm T}$), and succinic acid polyesters [$-{\rm COC}_2{\rm H}_4{\rm COO}({\rm CH}_2)_m{\rm O}-]_n$, m=2 and 4 (subsequently referred to as ${\rm C}_m{\rm S}$). These samples were isothermally crystallized from the melt under well-controlled conditions in order to avoid an annealing effect during NMR measurements. Therefore, a definite amount of crystalline component coexists with a noncrystalline component, which has been confirmed by ¹H broad-line analysis. ¹³⁻¹⁷ This paper, however, deals with only the rubbery, noncrystalline component.

Experimental Section

Samples. Terephthalic acid polyesters C_2T , C_3T , C_4T , and $C_{10}T$ were obtained from commercial sources and C_6T was pre-

Table I
Crystallization Conditions, Intrinsic Viscosity Number,
and Melting Temperature for Different Polyesters

	crystallization conditions				
sample	temp/ °C	time/ h	$[\eta]^a/g^{-1}\cdot dL$	$T_{\mathbf{m}}^{b}/$	
C_2T C_3T C_4T C_6T $C_{10}T$ C_2S C_4S	240 215 200 142 120 90 97	4 24 4 5 24 24	0.718^{c} 0.775 0.887 0.404 1.222 0.367 0.458	263 234 224 157 134 108 119	

 a [η]'s were measured at 25 °C in 1/1 tetrachloroethane/phenol for C $_m$ T and in chloroform for C $_m$ S, respectively. b Measured with a Perkin-Elmer DSC 1-B at a scan rate of 10 °C/min. c This value corresponds to $\overline{M}_{\rm V}=20\,400.^{14}$

pared by polycondensation of terephthaloyl chloride and hexamethylene glycol. ¹⁸ As aliphatic polyesters, poly(ethylene succinate) (C_2S) and poly(tetramethylene succinate) (C_4S) were prepared by direct polycondensation of succinic acid and the corresponding glycols. ¹⁹ All the samples were purified by precipitation from o-chlorophenol or chloroform solution into methanol.

Each of these specimens was melted in a 10-mm NMR tube under vacuum or sometimes in an argon atmosphere at a temperature at least 50 °C higher than the melting temperature; after sealing it was crystallized for 4 or 24 h in a thermostat controlled at a given temperature and quenched in ice water. In each case the crystallization temperature was chosen so that the crystallization started within 10–30 min. The crystallization conditions are summarized in Table I together with the limiting viscosity number [η], measured in o-chlorophenol or chloroform at 25 °C, and melting temperature $T_{\rm m}$, which was determined as a final temperature of the endothermic melting curve measured with a Perkin-Elmer DSC 1-B at a scan rate of 10 °C/min.

It is noted here that the $T_{\rm m}$ for ${\rm C_4S}$ obtained by us is much higher than the value cited in ref 20. Since the latter was measured with a polarizing microscope, it should not be cited as $T_{\rm m}$.

NMR Measurements. Natural-abundance ¹³C NMR spectra were obtained for the samples directly crystallized in NMR tubes

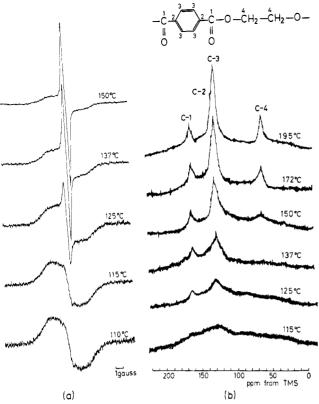


Figure 1. ^1H broad-line first-derivative NMR spectra (a) and ^1H scalar-decoupled ^{13}C NMR spectra (b) of solid poly(ethylene terephthalate) (C_2T) at different temperatures.

at 25.1 MHz with a JEOL JNM-FX100 pulse FT NMR spectrometer under conditions of proton noise decoupling. The field strength $\gamma_{\rm H}H_{\rm 1H}/2\pi$ of the decoupling was 6.5 kHz. A ²H external lock unit was used as a frequency lock. Ordinary spectra were obtained with a pulse width of 6 μ s, corresponding to a flip angle of 45° and a repetition time of 2.5 s, employing 8K data points over a 6024-Hz frequency range.

 $^{13}\mathrm{C}$ spin-lattice relaxation times T_1 were measured only for protonated carbons by the inversion-recovery method, using homogeneity spoiling. Intervals τ between 180° and 90° pulses ranged from 10 to 400 ms and the repetition times were 7–10 times T_1 . Longitudinal decay curves obtained were not always exponential but the deviation was not great. Therefore, all T_1 values were determined from the initial slope in the region of $\tau < 200$ ms. Estimated accuracy of the T_1 's was mostly $\pm 10\%$ but sometimes fell to $\pm 20\%$ below the temperature at which the minimum value for T_1 was observed.

¹H broad-line first-derivative NMR spectra were also obtained for the same samples used in the ¹³C NMR measurements with a JNM-PW-60 NMR spectrometer (JEOL) at a frequency of 60 MHz. The magnetic field was modulated at 35 Hz and an amplitude of 0.05–0.08 mT.

The sample temperature was regulated to ± 0.5 °C and monitored by a JEOL variable-temperature unit. The temperature was calibrated by using a copper—constantan thermocouple buried in a polymer block in an NMR tube, which was placed in the probe in the same fashion as for NMR measurements.

Results

A. Aromatic Polyesters. Figure 1 shows $^1\mathrm{H}$ broad-line first-derivative and $^{13}\mathrm{C}$ high-resolution NMR spectra for $\mathrm{C_2T}$ at different temperatures. Both kinds of spectra are very broad and seem to be almost structureless below 115 °C. At 125 °C, however, a narrow line appears in the $^1\mathrm{H}$ broad-line spectrum and the intensity increases with increasing temperature. This narrowing is associated with the onset of segmental motions with the order of correlation time 10^{-4} – 10^{-5} s as discussed later. Detailed contributions of the respective carbons to this narrowing can be

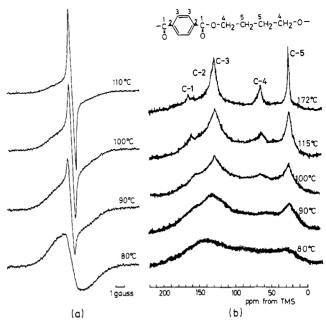


Figure 2. ¹H broad-line first-derivative NMR spectra (a) and ¹H scalar-decoupled ¹³C NMR spectra (b) of solid poly(butylene terephthalate) (C₄T) at different temperatures.

distinctly observed in the ¹³C NMR spectra shown in Figure 1b. In accord with the narrowing of the broad-line spectrum, the ¹³C spectrum shows sharp lines at about 130 and 165 ppm at 125 °C and another line appears at about 65 ppm at 150 °C; they increase in intensity and in resolution at higher temperatures.

The chemical shifts of the ¹³C lines observed here are in good agreement with those measured for its o-chlorophenol solution. Hence, the lines at 165, 130, and 65 ppm are assigned to carbonyl carbon (C-1), quaternary aromatic carbon (C-2) and protonated aromatic carbon (C-3) (though they are not well resolved even at 195 °C), and CH₂ carbon in the glycol unit (C-4), respectively. On the basis of this assignment, it is evident that the terephthaloyl residues (C-1, C-2, and C-3) are more mobile than CH₂ groups (C-4), as will be discussed in detail in the next section

Figure 2 shows ¹H broad-line and ¹³C high-resolution spectra above 70 °C for C₄T, which contains two more CH₂ groups than C₂T. In this case sharp ¹³C lines appear also in accord with the appearance of a narrow line in the ¹H broad-line spectra. However, the appearance order of each ¹³C line is different from the case of C₂T; first the line for the central CH₂ carbons (C-5) in the glycol units (hereafter referred to as central CH₂) appears at about 90 °C and then successively at 100 °C the lines for terephthaloyl residues (C-1, C-2, and C-3) and terminal OCH₂ carbons (C-4) in the glycol units (hereafter referred to as terminal CH₂) appear.

Such high-resolution lines could be also observed for other polyesters, though for $C_{10}T$ central CH_2 carbons were not well resolved even in the molten state. In Figure 3, the temperatures T_a at which sharp ^{13}C lines appear are plotted against the number m of CH_2 groups for the three kinds of protonated carbons. The temperatures T_n , at which a narrow line appears in the 1H broad-line spectra, are also shown in this figure. The T_a 's of those carbons decrease with increasing m but the mode of the dependency of T_a on m differs among the carbons. The T_a of CH_2 is higher than that of aromatic CH for m=2. This is the same for m=3, where two kinds of CH_2 groups have the same T_a . For m=4, however, the T_a of central CH_2 is lower than that of terminal CH_2 so that the former

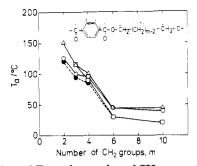


Figure 3. Plots of T_a vs. the number of CH₂ groups in the glycol residues for terephthalic acid polyesters: (Q) aromatic CH (C-3); (Δ) terminal CH₂ (C-4); (\Box) central CH₂ (C-5, -6, -7, and -8). Filled circles indicate T_n 's at which a narrow line appears in ¹H broad-line NMR spectra.

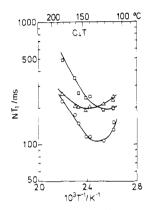


Figure 4. Semilogarithmic plots of 13 C NT_1 vs. the reciprocal of absolute temperature for C_4 T: (O) C-3; (\triangle) C-4; (\square) C-5.

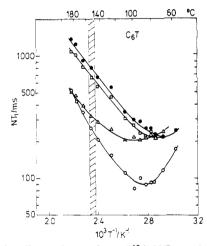


Figure 5. Semilogarithmic plots of 13 C NT_1 vs. the reciprocal of absolute temperature for C_6T : (O) C-3; (Δ) C-4; (\Box) C-5; (\bullet) C-6. The hatched zone in the figure indicates the melting temperature range of the polymer determined by DSC.

becomes lower than the $T_{\rm a}$ of aromatic CH, whereas the latter is still higher than it. When m>4, such a difference in $T_{\rm a}$ between two CH₂ carbons gradually increases with increasing m, though the difference between terminal CH₂ and aromatic CH seems to disappear.

The temperature T_n is in good accord with the lowest value of T_a for each m, i.e., with the T_a of aromatic CH for $m \leq 3$ and with the T_a of central CH₂ for $m \geq 4$. This means that the narrow component appearing near T_n in the ¹H broad-line spectra is composed of aromatic CH protons for $m \leq 3$ and central CH₂ protons for $m \geq 4$.

In Figures 4–6, NT_1 's of aromatic CH, terminal CH₂, and central CH₂ carbons are plotted against the reciprocal of absolute temperature for C₄T, C₆T, and C₁₀T, respectively.

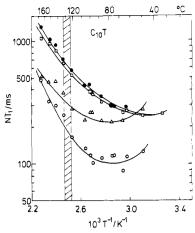


Figure 6. Semilogarithmic plots of 13 C NT_1 vs. the reciprocal of absolute temperature for C_{10} T: (O) C-3; (Δ) C-4; (\square) C-5 and C-6; (\bullet) C-7 and C-8. The hatched zone indicates the melting temperature range of the polymer.

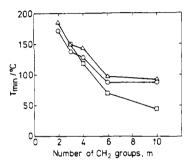


Figure 7. Plots of T_{\min} vs. the number of CH₂ groups in the glycol residues for terephthalic acid polyesters: (O) aromatic CH (C-3); (\triangle) terminal CH₂ (C-4); (\square) central CH₂ (C-5, -6, -7, and -8).

 sample	$T_{\mathbf{a}}/^{\circ}\mathbf{C}$	$T_{\mathbf{min}}/^{\circ}\mathbf{C}$	
 C ₂ S	30	61	
$\mathbf{c.s}$	-10	28	

Here, NT_1 is the product of T_1 and the number N of protons directly attached to the carbon. As expected by the single-correlation-time theory, with increasing temperature each T_1 initially decreases, passes through a minimum, and then monotonically increases, even through the melting zone (hatched zone in Figures 5 and 6) of the polymer, without any discontinuity as reported by Mandelkern et al. However, NT_1 at the minimum, $(NT_1)_{\min}$, is much greater than the value $((NT_1)_{\min} = 36$ ms at the resonance frequency of 25.1 MHz) calculated according to the theory. For example, the $(NT_1)_{\min}$ values for C_4T are 190 ms for both CH_2 carbons and 107 ms for the aromatic CH. Since similar values were obtained for the corresponding carbons of the other polyesters, their high values of $(NT_1)_{\min}$ will reflect unique molecular motions of terephthalic acid polyesters.

The temperature T_{\min} at which NT_1 shows a minimum value is also found to be markedly different among those carbons as shown in the figures. Their T_{\min} values are plotted against m in Figure 7. Although each T_{\min} shifts to a higher temperature in comparison with the corresponding $T_{\rm a}$, the dependence of T_{\min} on m is very similar to the case of $T_{\rm a}$.

B. Aliphatic Polyesters. In Figure 8, the NT_1 's of CH_2 carbons for C_4S are plotted against the reciprocal of absolute temperature. As clearly seen, the T_{\min} 's of all CH_2

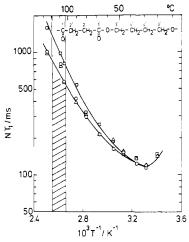


Figure 8. Semilogarithmic plots of 13 C NT_1 vs. the reciprocal of absolute temperature for C_4 S: (O) C-2'; (Δ) C-3'; (\Box) C-4'.

carbons are in good accord with each other. Since there is no difference in T_a as well as T_{\min} of each carbon of the aliphatic polyesters, their common values are summarized in Table II.

Discussion

A. Relation among $T_{\rm g}$, $T_{\rm a}$, $T_{\rm n}$, and $T_{\rm min}$. First we discuss the time scale of molecular motions associated with these temperatures. As shown in Figures 1 and 2, the ¹H and ¹³C NMR spectra are very broad in the solid state, where molecular motions are highly restricted. This is due to the wide distribution of the local field produced around the observed ¹H or ¹³C nuclei by the neighboring ¹H's. However, this local field will be averaged above T_n or T_a by the pronounced molecular motion. According to Kubo and Tomita's single-correlation-time theory,²² an NMR line for like nuclei has been assumed to narrow effectively under the condition of $\sigma_0 \tau_c < 1$. Here, σ_0 is the square root of the second moment for the line in the rigid state and τ_c is the correlation time representing the isotropic motion of the nuclei. However, the narrowing occurs more markedly at T_n in experiments as shown in Figures 1a and 2a so that the line width decreases to less than 1/10, suggesting that the value of $\sigma_0 \tau_c$ is much less than 1. Since such a narrow line is theoretically obtained when $\sigma_0 \tau_c \leq$ 0.1 (see Figure 2 in ref 22), the narrowing condition at T_n should be practically $\sigma_0 \tau_c \leq 0.1$. Therefore, τ_c associated with T_n is estimated to be 10^{-4} – 10^{-5} s, using the value of

 $\sigma_0=1.4\times10^4$ Hz measured for amorphous $C_2T.^{23}$ This estimation may be also valid for T_a , because both of the spectra narrow in the same temperature range. However, some refinement will be necessary for both cases, because the T_a 's differ among the individual carbons as shown in Figure 3. Such differences in T_a may not suggest that the individual carbons separately initiate the isotropic motion with $\tau_c=10^{-4}-10^{-5}$ s at different temperatures. It is rather plausible to assume that the segments composed of these carbons cooperatively undergo the isotropic motion. Therefore, the $^1\mathrm{H}$ local field will disappear by the additional effect of inherent inner motions in each carbon, even if the τ_c of the isotropic motion does not attain $10^{-4}-10^{-5}$ s.

A similar refinement is necessary for the estimation of the $\tau_{\rm c}$ associated with $T_{\rm min}$, which is assumed to be 5.0 \times 10^{-9} s for a Larmor frequency of 25.1 MHz by the single-correlation-time theory. This value can be also calculated by using different models of molecular chain motions. For example, for the 3- τ model the $\tau_{\rm c}$'s of central CH₂, aromatic CH, and terminal CH₂ of C₆T are 5.2 \times 10⁻⁸, 2.1 \times

 10^{-8} , and 8.3×10^{-9} s, respectively, as shown later. Though these $\tau_{\rm c}$ values are somewhat changed depending on the models used for the analysis, it is sure that $T_{\rm a}$ and $T_{\rm min}$ are associated with the onset of the isotropic segmental motions with a somewhat longer time scale than $\tau_{\rm c} = 10^{-4} - 10^{-5}$ and 5.0×10^{-9} s, respectively, and shift to lower temperatures by inner motions.

Axelson and Mandelkern¹² have recently found from ¹³C NMR measurements on nine amorphous and semicrystalline polymers, in which polyesters were not included, that the difference $T_{\rm a}-T_{\rm g}$ ranges from about 30 to 100 °C.²⁶ Though the aromatic polyesters have different $T_{\rm a}$'s for different backbone carbons, $T_{\rm a}-T_{\rm g}$ for the carbons is also in the above-cited range. As discussed by Axelson and Mandelkern,¹² this difference must be explained by the difference in $\tau_{\rm c}$ for the isotropic segmental motion. If $\tau_{\rm c}$'s at $T_{\rm a}$ and $T_{\rm g}$, $\tau_{\rm c}(T_{\rm a})$ and $\tau_{\rm c}(T_{\rm g})$, are assumed to be $10^{-4}-10^{-5}$ and 10^2 s,⁴⁶ respectively, $T_{\rm a}-T_{\rm g}$ is estimated as 27–35 °C using the WLF equation²⁷

$$\log \frac{\tau_{\rm c}(T_{\rm a})}{\tau_{\rm c}(T_{\rm g})} = -\frac{17.44(T_{\rm a} - T_{\rm g})}{51.6 + (T_{\rm g} - T_{\rm g})} \tag{1}$$

This value agrees fairly well with the experimental data but in detail the effect of inner motions should be definitely considered. In a similar manner, the difference T_{\min} – T_{σ} was estimated to be 74 °C.

 $-T_{\rm g}$ was estimated to be 74 °C.

B. Segmental Motions of Polyesters. As shown in Table II, each carbon of the aliphatic polyesters has the same $T_{\rm a}$ and $T_{\rm min}$. Also, no significant difference in $T_{\rm min}$ is reported for each backbone carbon of natural cis-1,4-polyisoprene. Therefore, these polymers are not greatly different in inner motions of backbone carbons, even though ester groups or double bonds are included in their main chains.

On the other hand, in terephthalic acid polyesters the inner motions have been found to be markedly different among aromatic CH, terminal CH₂, and central CH₂ at T_a and T_{\min} , which are associated with the onset of isotropic segmental motions with the orders of $\tau_c = 10^{-4} - 10^{-5}$ and 5.0×10^{-9} s, respectively. This difference will be produced by the bulky terephthaloyl residues, which are almost planar owing to conjugated double bonds between the benzene ring and ester groups. 28,29 In C₂T these bulky residues restrict greatly the inner motions of CH2 groups so that each CH₂ will be immobile until the terephthaloyl residues become mobile (this is reflected in the higher T_a and T_{\min} of the CH₂ groups than those of aromatic CH). Such a strong effect of terephthaloyl residues also exists on the all CH₂'s of C₃T. However, in C₄T, C₆T, and C₁₀T only central CH2 groups will be free from the restriction, because their $T_{\rm a}$ and $T_{\rm min}$ values are the lowest of the three kinds of carbons (Figures 3 and 7). That is, these CH₂'s will initiate independent inner motions, whereas terminal CH2's are still highly restricted. Although so-called three-bond motion, 30,31 four-bond motion, 30,31 and crankshaft motion³² have been proposed as models of inner motions for the CH2 sequence, three-bond motion must be possible for the 4-CH₂ sequence in C₄T, in which the central two CH₂'s change positions even though the terminal CH2's are fixed on a tetrahedral lattice. This suggests that the 4-CH2 sequence is the smallest unit for independent inner motions of the CH₂ sequence.

The low mobility of the terminal CH_2 compared to the central CH_2 has been also observed in the glassy state below T_g and in the dissolved state. Jelinski³³ has found by cross-polarization/dipolar-decoupling ¹³C NMR spectroscopy, using slow magic-angle sample spinning (0.88 kHz), that the central CH_2 of C_4T undergoes motion at a

Table III

Parameters of 3-7 Model Used for the Calculation of the NT, Values for Protonated Carbons of $C_{4}T^{a}$

carbon	_		libration			isotropic motion	
	$\frac{1}{\theta_{R}/\text{deg}}$	$\frac{\tau_{\mathbf{R}/\mathbf{S}}}{\tau_{\mathbf{R}}}$	θ_{L}/deg	$ au_{ extbf{Lo}}/ extbf{s}$	$\Delta E_{\mathbf{L}}/k\mathbf{J}\cdot\mathbf{mol}^{-1}$	$ au_{ m Io}/{ m s}$	$\Delta E_{ m I}/{ m kJ \cdot mol^{-1}}$
C-3	29	1.0 × 10 ⁻¹¹	62	3.7×10^{-16}	49	1.1 × 10 ⁻¹⁵	50
C-4	86	2.0×10^{-12}	39	9.7×10^{-15}	44		
C-5	80	2.0×10^{-12}	56	1.1×10^{-15}	43		
C-6	77	2.0×10^{-12}	58	1.1×10^{-15}	43		

 a It has been assumed that the correlation times $\tau_{\rm L}$ and $\tau_{\rm I}$ change with temperature according to the equations $\tau_{\rm L}$ = $\tau_{\rm L_0} \exp(\Delta E_{\rm L}/RT)$ and $\tau_{\rm I} = \tau_{\rm I_0} \exp(\Delta E_{\rm I}/RT)$, respectively, whereas $\tau_{\rm R}$, $\theta_{\rm R}$, and $\theta_{\rm L}$ are independent of temperature. Too short values of $\tau_{\rm L_0}$ and $\tau_{\rm I_0}$ will indicate that such temperature dependences of $\tau_{\rm L}$ and $\tau_{\rm I}$ fail at much higher temperatures ($T \sim \infty$). Therefore, their values seem to be only parameters to give the values of $\tau_{\rm L}$ and $\tau_{\rm I}$ in the experimental range of temperature. For the case of somewhat higher values of $\Delta E_{\rm L}$ and $\Delta E_{\rm I}$, see ref 47.

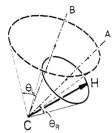


Figure 9. Schematic diagram of $3-\tau$ model for the motion of a C-H internuclear vector.

rate that is fast relative to the CH₂ chemical shift interaction ($\tau_{\rm c} < 10^{-3}$ s), whereas the terminal CH₂ is less mobile. The low mobility of the terminal CH₂ of the polymer was also confirmed by solid-state high-resolution ¹³C T_1 measurements at room temperature.³⁴ In addition, Komoroski³⁵ and we³⁶ observed that the terminal CH₂'s of C₄T, C₆T, and C₁₀T have significantly shorter ¹³C T_1 's than the corresponding central CH₂'s in solution. Since the barrier to rotation around the CH₂–O bond (ca. 1 kcal/mol^{37,38}) is lower than that around the CH₂–CH₂ bond (ca. 3 kcal/mol³⁹), the rotation around the CH₂–O bond does not relate to the reduction of the mobility of terminal CH₂. A possible cause will be the low mobility of the CH₂–O bond itself, which must move cooperatively with the bulky terephthaloyl residue.

In order to know in more detail the effect of terephthaloyl residues on the segmental motions of the polyesters, it is necessary to analyze the temperature dependences of T_1 (shown in Figures 4–6), using appropriate models. Since $(NT_1)_{\min}$ values are easily obtainable from measurements in the bulk state compared to measurements in the solution state, ^{35,36} the analysis is highly reliable. As already pointed out, the $(NT_1)_{\min}$'s are not only different among the individual carbons but also much higher than those expected from the single-correlation-time model. Such high $(NT_1)_{\min}$ values have not been explained by means of models of distribution of correlation times ^{9,40,41} or a defect diffusion model. ^{31,42} Woessner's 2- τ model ⁴³ has been also unsuccessful, ²⁵ because polymeric chain motions are not well represented by only two kinds of correlation times.

On the other hand, the 3- τ model, proposed by Howarth, 24,44 seems suitable for the analysis of segmental motions of the polyesters. In this model, schematically depicted in Figure 9, three correlation times, $\tau_{\rm R}$, $\tau_{\rm L}$, and $\tau_{\rm I}$, are considered, which represent a stochastic rotation of C–H internuclear vectors around axis A, the librational motion of axis A around another axis B, and the isotropic spherical motion of axis B, respectively. Here, the librational motion indicates that axis A moves at random to all directions within a cone, whose axis is axis B. We assumed in this work that $\tau_{\rm I}$ and $\tau_{\rm L}$ change with temper-

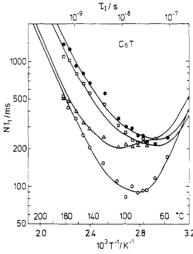


Figure 10. Comparison between experimental NT_1 's (symbols) and calculated NT_1 's (solid curves). The experimental values are the same as shown in Figure 5 and the calculated ones are obtained by using the parameters given in Table III.

ature according to the Arrhenius equation, i.e., $\tau_{\rm I}=\tau_{\rm I0}$ exp $(\Delta E_{\rm I}/RT)$ and $\tau_{\rm L}=\tau_{\rm L0}$ exp $(\Delta E_{\rm L}/RT)$, whereas $\tau_{\rm R}$ is independent of temperature. $\tau_{\rm R}<\tau_{\rm L}<\tau_{\rm I}$ and $\Delta E_{\rm L}<\Delta E_{\rm I}$ are also assumed. These assumptions are reasonable to describe the motions of polymeric chains. In addition, the vertical angles $\theta_{\rm R}$ and $\theta_{\rm L}$ for the rotation and the libration are also assumed to be independent of temperature, though $\theta_{\rm L}$ may somewhat increase with increasing temperature.

The calculated NT_1 's for C_6T , obtained by trial and error analysis, are shown as solid curves in Figure 10 and the parameters used for the calculation are tabulated in Table III. The calculated curves fit well to the experimental points for all protonated carbons.⁴⁸ Similar good agreements between calculated and experimental NT_1 's were obtained for the other polyesters and the differences in parameters were not great among the polymers. Therefore, we summarize here the common features of molecular motions of the polyesters, based on the results given in Table III. Since the θ_R values of the CH_2 carbons are nearly equal to the supplementary angle (72°) of the bond angle C-C-H, the C-H vectors of the CH₂ groups rotate around the CH₂-CH₂ or CH₂-O bonds.⁴⁹ On the other hand, the aromatic C-H vectors rotate around the axis with the angle of about 30° against the long axis of the terephthaloyl residue,50 whose rotating axis is almost parallel to the direction of the CH₂ sequence in the trans-trans conformation state.²⁸ This axis as well as CH₂-CH₂ and CH₂-O bonds further librates within the individual cones and their vertical angles increase in the order of terminal CH₂, central CH₂, and aromatic CH. The value of $(NT_1)_{\min}$ has been found to depend primarily on the θ_R and to tend to increase with increasing θ_R .

According to these results, the high T_{\min} value of terminal CH2 cannot be explained by any factor for rotational motion of the CH₂ around the CH₂-CH₂ or CH₂-O bond, but by the low vertical angle, i.e., the low amplitude, of librational motion of the CH₂-O bond. This explanation is highly plausible, because there is no inner freedom in the terephthaloyl residues including the CO-O bond owing to the conjugated system and therefore the librational motion of the CH₂-O bond directly depends on the motion of the bulky terephthaloyl residues. A more detailed discussion of polymeric chain motions will be made after the completion of this series of works.

Registry No. C₂T (repeating unit), 25038-59-9; C₃T (repeating unit), 26546-03-2; C₃T (copolymer), 26590-75-0; C₄T (repeating unit), 24968-12-5; C₄T (copolymer), 26062-94-2; C₆T (repeating unit), 26637-42-3; C₆T (copolymer), 28085-76-9; C₁₀T (repeating unit), 27043-73-8; $C_{10}T$ (copolymer), 27055-32-9; C_2S (repeating unit), 25667-11-2; C_2S (copolymer), 25569-53-3; C_4S (repeating unit), 26247-20-1; C₄S (copolymer), 25777-14-4.

References and Notes

- See, for example: McCrum, N. G.; Read, B. E.; Williams. G. 'Anelastic and Dielectric Effects in Polymer Solids"; Wiley:
- See, for example: Schaefer, J.; Stejskal, E. O.; Buchdahl, R. Macromolecules 1977, 10, 384. Schaefer, J.; Stejskal, E. O. "Topics in Carbon-13 NMR Spectroscopy"; Levy, G. C., Ed.; Wiley-Interscience: New York, 1979; Vol. 3, Chapter 4. Lyerla, L. R. "Methods Exp. Phys. 1980, 16, Part A, Chapter 4.
- (3) Fyfe, C. A.; Mossbruger, H.; Yannoni, C. S. J. Magn. Reson. 1**979**, *36*, 61.
- (4) Fleming, W. W.; Fyfe, C. A.; Lyerla, J. R.; Vanni, H.; Yannoni,
- C. S. Macromolecules 1980, 13, 460.
 (5) Fleming, W. W.; Lyerla, J. R.; Yannoni, C. S. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1981, 22 (1), 275.
- Duch, M. W.; Grant, D. M. Macromolecules 1970, 3, 165.
- Schaefer, J. Macromolecules 1972, 5, 427
- Schaefer, J.; Chin, S. H.; Weissman, S. I. Macromolecules 1972,
- (9) Schaefer, J. Macromolecules 1973, 6, 882.
- Komoroski, R. A.; Maxfield, J.; Mandelkern, L. Macromolecules 1977, 10, 545.
- (11) Komoroski, R. A.; Maxfield, J.; Sakaguchi, F.; Mandelkern, L. Macromolecules 1977, 10, 550.
- Axelson, D. E.; Mandelkern, L. J. Polym. Sci., Polym. Phys. Ed. 1978, 16, 1135.
- (13) Kitamaru, R.; Horii, F. Adv. Polym. Sci. 1978, 26, 137.
- (14) Horii, F.; Yamagishi, H.; Kitamaru, R.; Konishi, K. Polym. Prepr. Jpn. 1978, 27 (9), 1644.
- Hirai, A.; Horii, F.; Kitamaru, R. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1801.
- (16) Horii, F.; Kitamaru, R. J. Polym. Sci., Polym. Phys. Ed. 1981.
- (17) Horii, F.; Kitamaru, R., unpublished work.
- Flory, P. J.; Bedon, H. D.; Keefer, E. H. J. Polym. Sci. 1958, 28, 151.
- (19) Biggs, B. S.; Erickson, R. H.; Fuller, C. S. Ind. Eng. Chem. **1947**, *39*, 1090.
- (20) Brandrup, J.; Immergut, E. H., Eds. "Polymer Handbook", 2nd ed.; Wiley-Interscience: New York, 1975; p III-86.

- (21) Solomon, I. Phys. Rev. 1955, 99, 559.
- Kubo, R.; Tomita, K. J. Phys. Soc. Jpn. 1954, 9, 888. Horii, F.; Kitamaru, R., unpublished work.
- (24) Howarth, O. W. J. Chem. Soc., Faraday Trans. 2 1980, 76,
- (25) Murayama, K.; Hirai, A.; Horii, F.; Kitamaru, R. Polym. Prepr. Jpn. 1981, 30 (8), 2006
- (26) According to our recent results, the $T_{\rm a}$'s of the poly(n-butyl acrylate) backbone carbons are 46 °C higher than the value reported by Axelson and Mandelkern. Therefore $T_{\rm a} T_{\rm g}$ is
- 100 °C for poly(n-butyl acrylate).
 (27) Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77, 3701.
- Daubeny, R. de P.; Bunn, C. W.; Brown, C. J. Proc. R. Soc. London, Ser. A 1954, 226, 531.
- Arnott, S.; Wonacott, A. J. Polymer 1966, 7, 157.
- Monnerie, L.; Geny, F. J. Chim. Phys. 1969, 66, 1691. Valeur, B.; Jarry, J. P.; Geny, F.; Monnerie, L. J. Polym. Sci., Polym. Phys. Ed. 1975, 13, 667.
- Schatzki, T. J. Polym. Sci. 1962, 57, 496. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1965, 6, 646.
- (33) Jelinski, L. W. Macromolecules 1981, 14, 1341.
 (34) Jelinski, L. W.; Dumais, J. J. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1981, 22, 273.
- (35) Komoroski, R. A. J. Polym. Sci., Polym. Phys. Ed. 1979, 17,
- (36) Hirai, A.; Horii, F.; Kitamaru, R., to be published.
- (37) Wilmshurst, J. K. J. Mol. Spectrosc. 1957, 1, 201.
 (38) Riveros, J. M.; Wilson, E. B. J. Chem. Phys. 1967, 46, 4605.
- Herschbach, D. R. International Symposium on Molecular Structure and Spectroscopy, Tokyo, 1962, Butterworths, London, 1963; cited in: Flory, P. J. "Statistical Mechanics of Chain Molecules"; Wiley: New York, 1969. (40) Connor, T. M. Trans. Faraday Soc. 1964, 60, 1574.

- (41) Heatley, F.; Begum, A. Polymer 1976, 17, 399. (42) Hunt, B. I.; Powles, J. G. Proc. Phys. Soc. 1966, 88, 513.
- Woessner, D. E. J. Chem. Phys. 1962, 36, 1.
- (44) Howarth, O. W. J. Chem. Soc., Faraday Trans. 2 1979, 75, 863.
- (45) Comix, A. Makromol. Chem. 1958, 26, 226.
- McCall, D. W. NBS Spec. Publ. 1969, No. 310, 475.
- This assumption will relate to the cause of the high values of $\Delta E_{
 m L}$ and $\Delta E_{
 m I}$ given in Table III. If the temperature dependent dence of $\theta_{\rm L}$ can be introduced to this analysis, reasonable values will be obtained for $\Delta E_{\rm L}$ and $\Delta E_{\rm L}$.
- The $\tau_{\rm I}$ values of 10^{-9} – 10^{-7} s shown in Figure 10 seem somewhat short to be physically sensible. Since this suggests that the Howarth model cannot fully describe the long-range motions of the polyester chains, some appropriate analyses should be tried for detailed discussion of the long-range motions.
- If the θ_R value for the CH₂'s is changed from 77-86° to 36-39° without any change of other parameters shown in Table III, similar good agreements are obtained between calculated and experimental NT_1 's. However, the meaning of such low θ_R values is not clear at present.
- Though the axis perpendicular to the long axis of the terephthaloyl residue has also the angle of 30° against all C-H vectors of the same terephthaloyl residue, this axis is not reasonable for the librational motion of the C-H vectors in longchain molecules. On the other hand, the axis mentioned in the text has angles of 30° and 90° against the C-H vectors. However, this axis has been concluded to be the librational axis because almost equal values of NT_1 are also obtained for θ_R = 90° and $\tau_R = 1.0 \times 10^{-9}$ s without any change of other parameters and the analysis considering these two types of C-H vectors leads to the same conclusion.